网络服务
当前位置: 首页 >> 网络服务 >> 正文
网络分析的前置知识
 

1  交换基础
  交换发生网络的第二层,即数据链路层。谈到交换的问题,从广义上讲,任何数据的转发都可以称作交换。当然,现在我们指的是狭义上的交换,仅包括数据链路层的转发。 

1.1  交换原理
  所谓交换,就是将分组(或帧)从一个端口移到另一个端口的简单动作。交换机在操作过程当中会不断的收集资料去建立它本身的一个地址表,MAC地址表显示了主机的MAC地址与以太网交换机端口映射关系,指出数据帧去往目的主机的方向。当以太网交换机收到一个数据帧时,将收到数据帧的目的MAC地址与MAC地址表进行查找匹配。如果在MAC地址表中没有相应的匹配项,则向除接收端口外的所有端口广播该数据帧,有人将这种操作翻译为泛洪(Flood,泛洪操作广播的是普通数据帧而不是广播帧)。在我们测试过的交换机中,有的除了能够对广播帧的转发进行限制之外,也能对泛洪这种操作进行限制。
  而当MAC地址表中有匹配项时,该匹配项指定的交换机端口与接收端口相同则表明该数据帧的目的主机和源主机在同一广播域中,不通过交换机可以完成通信,交换机将丢弃该数据帧。否则,交换机将把该数据帧转发到相应的端口。
交换机还将检查收到数据帧的源MAC地址,并查找MAC地址表中与之相匹配的项。如果没有,交换机将记录该MAC地址和接收该数据帧的端口,并激活一个定时器。这个过程被称作地址学习。由于有限的物理存储器,所有的交换机只能学习到2的48次幂中的一个很小子集,所以交换机只学习那些活动的MAC地址(不同的厂商的不同设备,其MAC地址的容量也是不相同的,MAC地址的容量也是交换机的一个比较重要的指标),这个定时器一般就是我们在配置交换机时的Age Time选项,一般我们都可以配置这一定时器的时间长度。在定时器到时的时候,该项记录将从MAC地址表中删除,这叫做老化(Aging)。而如果接收的数据帧的源MAC地址在MAC地址表中有匹配项,交换机将复位该地址的定时器。如果交换机不能够正确的学习MAC地址,则有可能造成数据包丢失还有泛洪现像的发生,特别是大量泛洪现象发生会影响交换机的转发性能,类似广播风暴对交换机的影响。 

1.2  交换技术
  局域网交换技术是作为对共享式局域网提供有效的网段划分的解决方案而出现的,它可以使每个用户尽可能地分享到最大带宽。交换技术是在OSI七层网络模型中的第二层,即数据链路层进行操作的,因此交换机对数据包的转发是建立在MAC地址基础上的,对于IP网络协议来说,它是透明的,即交换机在转发数据包时,不知道也无须知道信源机和目标机的IP地址,只需知其物理地址。
从网络交换产品的形态来看,交换产品大致有三种:端口交换、帧交换和信元交换。 

1.2.1  端口交换
  端口交换技术最早出现在插槽式的集线器中,这类集线器的背板通常划分有多条以太网段(每条网段为一个广播域),不用网桥或路由连接,网络之间是互不相通的。以大主模块插入后通常被分配到某个背板的网段上,端口交换用于将以太模块的端口在背板的多个网段之间进行分配、平衡。根据支持的程度,端口交换还可细分为: 

  模块交换:将整个模块进行网段迁移。
  端口组交换:通常模块上的端口被划分为若干组,每组端口允许进行   网段迁移。
  端口级交换:支持每个端口在不同网段之间进行迁移。这种交换技术是基于OSI第一层上完成的,具有灵活性和负载平衡能力等优点。如果配置得当,那么还可以在一定程度进行容错,但没有改变共享传输介质的特点,从而未能称之为真正的交换。 

1.2.2  帧交换
  帧交换是目前应用最广的局域网交换技术,它通过对传统传输媒介进行微分段,提供并行传送的机制,以减小冲突域,获得高的带宽。一般来讲每个公司的产品的实现技术均会有差异,但对网络帧的处理方式一般有以下几种:
直通交换:提供线速处理能力,交换机只读出网络帧的前14个字节,便将网络帧传送到相应的端口上。 

  存储转发:通过对网络帧的读取进行验错和控制。
  前一种方法的交换速度非常快,但缺乏对网络帧进行更高级的控制,缺乏智能性和安全性,同时也无法支持具有不同速率的端口的交换。因此,各厂商把后一种技术作为重点。
有的厂商甚至对网络帧进行分解,将帧分解成固定大小的信元,该信元处理极易用硬件实现,处理速度快,同时能够完成高级控制功能(如美国MADGE公司的LET集线器)如优先级控制。 

1.2.3  信元交换
  ATM技术代表了网络和通讯技术发展的未来方向,也是解决目前网络通信中众多难题的一剂“良药”,ATM采用固定长度53个字节的信元交换。由于长度固定,因而便于用硬件实现。ATM采用专用的非差别连接,并行运行,可以通过一个交换机同时建立多个节点,但并不会影响每个节点之间的通信能力。ATM还容许在源节点和目标、节点建立多个虚拟链接,以保障足够的带宽和容错能力。ATM采用了统计时分电路进行复用,因而能大大提高通道的利用率。ATM的带宽可以达到25M、155M、622M甚至数Gb的传输能力。 

2  路由基础
  所谓路由就是指通过相互连接的网络把信息从源地点移动到目标地点的过程。一般来说,在路由过程中,信息至少会经过一个或多个中间节点。通常,人们会把路由和交换进行对比,这主要是因为在普通用户看来两者所实现的功能是完全一样的。其实,路由和交换之间的主要区别就是交换发生在OSI参考模型的第二层(数据链路层),而路由发生在第三层,即网络层。这一区别决定了路由和交换在传输信息的过程中需要使用不同的控制信息,所以两者实现各自功能的方式是不同的。 

2.1  路由原理
  当IP子网中的一台主机发送IP分组给同一IP子网的另一台主机时,它将直接把IP分组送到网络上,对方就能收到。而要送给不同IP子网上的主机时,它要选择一个能到达目的子网上的路由器,把IP分组送给该路由器,由路由器负责把IP分组送到目的地。如果没有找到这样的路由器,主机就把IP分组送给一个称为“缺省网关”的路由器上。“缺省网关”是每台主机上的一个配置参数,它是接在同一个网络上的某个路由器端口的IP地址。路由器转发IP分组时,只根据IP分组目的IP地址的网络号部分,选择合适的端口,把IP分组送出去。同主机一样,路由器也要判定端口所接的是否是目的子网,如果是,就直接把分组通过端口送到网络上,否则,也要选择下一个路由器来传送分组。路由器也有它的缺省网关,用来传送不知道往哪儿送的IP分组。这样,通过路由器把知道如何传送的IP分组正确转发出去,不知道的IP分组送给“缺省网关”路由器,这样一级一级的传送,IP分组最终将送到目的地,送不到目的地的IP分组则被网络丢弃了。 

2.2  路由技术
  路由器不仅负责对IP分组的转发,还要负责与别的路由器进行联络,共同确定“网间网”的路由选择和维护路由表。
路由包含两个基本的动作:选择最佳路径和通过网络传输信息。在路由的过程中,后者也称为(数据)交换。交换相对来说比较简单,而选择路径很复杂。 

2.2.1  路径选择
  路径选择是判定到达目的地的最佳路径,由路由选择算法来实现。由于涉及到不同的路由选择协议和路由选择算法,要相对复杂一些。为了判定最佳路径,路由选择算法必须启动并维护包含路由信息的路由表,其中路由信息依赖于所用的路由选择算法而不尽相同。
metric是路由算法用以确定到达目的地的最佳路径的计量标准,如路径长度。为了帮助选路,路由算法初始化并维护包含路径信息的路由表,路径信息根据使用的路由算法不同而不同。
路由算法根据许多信息来填充路由表。目的/下一跳地址对告知路由器到达该目的地址最佳方式是把分组发送给代表“下一跳”的路由器,当路由器收到一个分组,它就检查其目标地址,尝试将此地址与其“下一跳”相联系。路由表还可以包括其它信息。路由表比较metric以确定最佳路径,这些metric根据所用的路由算法而不同。  

2.2.2  (数据)交换
  交换算法相对而言较简单,对大多数路由协议而言是相同的,多数情况下,某主机决定向另一个主机发送数据,通过某些方法获得路由器的地址后,源主机发送指向该路由器的物理(MAC)地址的数据包,其协议地址是指向目的主机的。
路由器查看了数据包的目的协议地址后,确定是否知道如何转发该包,如果路由器不知道如何转发,通常就将之丢弃。如果路由器知道如何转发,就把目的物理地址变成下一跳的物理地址并向之发送。下一跳可能就是最终的目的主机,如果不是,通常为另一个路由器,它将执行同样的步骤。 

关闭窗口
部门用户
教职员工
学生用户
学校信息化资源